Wed Apr 19, 2017
SCORE: \qquad / 30 POINTS

1. No calculators / notes / unauthorized paper, electronics or communication allowed
2. Simplify all answers unless stated otherwise
3. Show proper calculus level work to justify your answers

A person's velocity (in meters per second) at time t (in seconds) is given by $v(t)=\left\{\begin{array}{cc}20+t, & 0 \leq t \leq 2 \\ 26-2 t, & 2 \leq t \leq 12\end{array}\right.$. SCORE: ≤ 15 PTS
a] Find the exact distance the person travelled from time $t=0$ seconds to $t=12$ seconds.

$$
V V=A(t) \quad A
$$

b] Estimate the distance the person travelled from time $t=0$ seconds to $t=12$ seconds using three subintervals and leftendpoints.
NOTE: You must show the arithmetic expression that you used to get your answer.
'he graph of function f is shown on the right.
he graph consists of a diagonal line, an arc of a circle, then two additional diagonal lines.
1] Evaluate $\int_{-10}^{10} f(x) d x$.

Using the limit definition of the definite integral, and right endpoints, find $\int_{-4}^{-1}\left(2 x^{2}+8 x\right) d x$. SCORE: $5_{10} 10 \mathrm{PTS}$

$$
\Delta x:=\frac{b-a}{r}=\frac{-1-4)^{-4}}{r}=\frac{3}{h}
$$

Evaluate $\int_{-0}^{0}\left(2 \sqrt{36-x^{2}}-|x+2|\right) d x$ using the properties of definite integrals and interpreting in terms of area. SCORE: \qquad 15 PTS

NOTE: You must show the proper use of the properties of the definite integral, NOT just the arithmetic.

$$
\begin{aligned}
1 & =\int_{-6}^{0}\left(2 \sqrt{36-x^{2}}-|x+2|\right) d x \\
A & =\int_{-6}^{2} \sqrt{36-x^{2}} d x-\int_{-6}^{0}|x+2| d x \\
& =2 \int^{0} \sqrt{36-x^{2}} d x-\left(\int_{-6}^{-2}-(x+2) d x+\int_{-2}^{0}(x+2) d x\right) \\
& =2-6 \\
& =181-106^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { NOTE: Solutions using any other method will earn } 0 \text { points. } \\
& f(x)=\int_{-4}^{-1}\left(2 x^{2}+8 x\right) d x \\
& =\lim _{n \rightarrow 9} \sum_{i=1}^{n}\left(2 x^{2}+8 k\right) \Delta x \\
& \Rightarrow \lim _{n \rightarrow \infty}\left(\frac{57}{6} \cdot \frac{n(n+1)(2 n+1)}{n^{3}}+\frac{72}{2} \cdot \frac{n(n+1)}{n^{2}}\right) \\
& =\lim _{h \rightarrow \infty}\left(\sum_{i=1}^{n} 24^{2} \Delta^{\prime} x+\sum_{i=1}^{n} 8 x \Delta x\right) \\
& =\left(\frac{57}{6} \cdot 2+\frac{72}{2}\right) \\
& =19+36 \\
& \begin{array}{l}
=\lim _{n \rightarrow \infty}\left(\sum _ { i = 1 } ^ { n } 2 (\frac { 3 i } { n }) ^ { 2 } \left[\frac{3}{n}+\sum_{i=1}^{n}\right.\right. \\
=\lim _{n \rightarrow 1}^{n}\left(\sum_{i=1}^{n} \frac{57 i^{2}}{n^{3}}+\sum_{i=1}^{n} \frac{72 i}{n^{2}}\right)
\end{array} \\
& =\lim _{n \rightarrow \infty}\left(\frac{57}{n^{3}} \cdot \sum_{i=1}^{n} i^{2}+\frac{72}{n^{2}} \sum_{i=1}^{n} i\right) \\
& =55=\int_{-4}^{-1} 2 x^{2}+d x d x \\
& \text { (1) } \lim _{n \rightarrow 0} \\
& =\lim _{n \rightarrow \infty} 1 \frac{57}{n^{3}}, \frac{\frac{n(n+1)(2 n+1)}{6}}{6}+\frac{72}{n^{2}} \cdot \frac{n)(n+1)}{2}
\end{aligned}
$$

